A Tricky Percutaneous Paravalvular Leak Closure Two Years After Implantation of 3f Enable Sutureless Bioprosthetic Aortic Valve

Vasileios F. Panoulas1,2,3, Matteo Montorfano1, Maurizio Taramasso1, Gennaro Giustino1,2, Giovanni La Canna4, Azeem Latib1,2, Antonio Colombo1,2

1Interventional Cardiology Unit, San Raffaele Scientific Institute, 2EMO-GVM Centro Cuore Columbus, Milan, Italy; 3Imperial College London, National Heart and Lung Institute, London, UK; 4Cardiac surgery echocardiography unit, San Raffaele Scientific Institute, Milan, Italy

Sutureless valves were designed in an attempt to simplify the aortic valve replacement procedure and reduce extracorporeal circuit time, whilst allowing complete excision of the calcified native valve using a minimally invasive approach. Elderly patients with significant comorbidities are considered to benefit the most, although randomized data are lacking. In registries of patients treated with implantation of a 3f Enable sutureless bioprosthetic aortic valve, all patients who developed paravalvular leak have been treated with valve explantation. This is the first case report describing a tricky yet successful percutaneous paravalvular leak closure 2 years after implantation of a 3f Enable sutureless aortic bioprosthesis.

Case presentation

A 79-year-old gentleman presented with worsening breathlessness, New York Heart Association class III, 2 years after surgical aortic valve replacement with a 27 mm sutureless 3f Enable bioprosthesis alongside coronary artery bypass (left internal mammary to left anterior descending). His admission transthoracic and transoesophageal echocardiograms revealed a volume-loaded, dilated left ventricle (left ventricular end-diastolic diameter [LVEDD] 67 mm, LV end-systolic diameter [LVESD] 47 mm) with preserved ejection fraction (60%). There was a well seated aortic bioprosthesis with severe paravalvular aortic regurgitation (grade +3, with diastolic flow reversal in the thoracic aorta; Figure 1A) originating from two orifices adjacent to the non- (NCC) and left coronary cusp (LCC) (distance...
between orifices <10 mm; Figure 1B). Computed tomography revealed two paraprosthetic defects adjacent to each other, with the one closer to the LCC being larger (8 × 3 mm; Figure 1C-F). The case was discussed by the local Heart Team. In view of the need for redo aortic valve replacement in a patient with a patent LIMA-to-LAD graft and moderately high surgical risk (Logistic EuroSCORE 13.6%, EuroSCORE II 4.67%, STS 3.6% STS-PROM 24.05%), the decision was made to proceed to percutaneous paravalvular leak closure using Amplatzer vascular plugs II (AVPII; AGA Medical Corp., Plymouth, Minnesota, USA). The procedure was performed under general anaesthesia and transoesophageal echo guidance. Using a right femoral approach, and a multipurpose diagnostic catheter, the LCC paravalvular defect was crossed with a Storq 0.035" wire (Cordis, Johnson and Johnson, Miami Lakes, FL, USA) (Figure 2A). A 10 mm AVPII device was delivered via a long 6 F sheath (Figure 2B, C) and released from its cable as the paravalvular leak originating from this orifice diminished. However, the second orifice contributed to moderate residual paravalvular aortic regurgitation. The decision was therefore made to seal the adjacent defect with a second AVPII, size 8 mm. However, catheter manipulations in the adjacent NCC orifice appeared to interfere with the stability of the first device.

Unfortunately, the first AVPII device had already been released from its delivery cable. Hence,
Figure 2. Steps demonstrating paravalvular leak (PVL) closure using two Amplatzer vascular plug II (AVPII) devices. The white dotted line highlights the position of the first 10 mm AVPII device. See text for further details. MPA – multipurpose catheter; NCC – non-coronary cusp.

Figure 3. Three-chamber transthoracic echocardiogram pre and post percutaneous paravalvular leak (PVL) closure.
the decision was made to secure it using a gooseneck snare (Amplatz GooseNeck snare, Microvena, St. Paul, Minnesota, USA) (Figure 2D, E). Left femoral artery access with a 6F sheath was achieved. The NCC adjacent defect was crossed with the use of a Storq wire under fluoroscopic and transoesophageal echo guidance. Subsequently, the multipurpose A catheter and the long 6F sheath were advanced through the residual paravalvular defect, while the first plug was maintained in place under traction with the Gooseneck wire via the right femoral access (Figure 2E). The second, 8 mm AVPII was delivered successfully in close proximity to the first one (Figure 2F, G) with dramatic reduction of the aortic regurgitation from moderate (Figure 3 pre) to trivial (Figure 3 post).

Discussion

To our knowledge, this is the first case demonstrating a successful percutaneous PVL closure after 3f Enable aortic valve implantation. The risk of reoperation in elderly patients with PVL of sutureless valves is high, particularly when their associated comorbidities are taken into consideration. In current times, an increasing number of elderly patients with severe aortic stenosis are treated with sutureless valves (either surgically, or using transcatheter aortic valve implantation –TAVI). It is expected, therefore, that the number of high-risk patients with paravalvular leaks after sutureless valve implantation will also increase. Given the often high reoperation risk or even inoperable state of some of these patients, percutaneous options should always be considered as an alternative when anatomy allows.

Acknowledgement

Dr. Vasileios Panoulas is in receipt of an interventional fellowship grant from Abbott Vascular UK & Ireland.

References