Transcatheter aortic valve implantation (TAVI) has become the treatment of choice for symptomatic severe aortic stenosis (AS) in “inoperable” patients and is non-inferior to surgical aortic valve replacement (sAVR) in “high-risk” operable patients.1-4 Since the first-in-human (FIM) TAVI in 2002 with the Cribier-Edwards valve, the procedure continues to be refined, with technological improvements making the process simpler and clinical results better. The fourth-generation SAPIEN 3 valve of Edwards Life-sciences is currently in use, after the Cribier-Edwards, SAPIEN and SAPIEN XT valves.5-10 Current efforts focus on minimizing access site complications, stroke risk, paravalvular regurgitation (PVR), and atrioventricular (AV) block while facilitating accurate positioning.

The SAPIEN valve family has been used in the treatment of more than 70,000 patients globally, most of them treated with the SAPIEN XT. Recently (16 June 2014), the Edwards SAPIEN XT transcatheter aortic heart valve (THV) received approval from the US Food and Drug Administration (FDA) for the treatment of high-risk and inoperable patients suffering from severe AS. The new generation valve SAPIEN 3 (S3) is a further development of the SAPIEN XT and incorporates features to reduce vascular complications and PVR. Furthermore, the new generation delivery system allows easier and more precise aortic valve positioning and implantation. The S3 valve was approved in Europe in January 2014; however, it is an investigational device that is not yet commercially available in the US and is currently being evaluated in the PARTNER-2 Trial.

Edwards SAPIEN-XT and SAPIEN-3 valves

The SAPIEN XT is a tri-leaflet bovine pericardial tissue valve mounted on a cobalt-chromium alloy stent and is available in four sizes: 20 mm (for dimensions of aortic annulus 16-18 mm), 23 mm (for dimensions of aortic annulus 18-22 mm), 26 mm (for dimensions of aortic annulus 22-25 mm) and 29 mm (for dimensions of aortic annulus 24-28 mm) (Figure 1).

A substantial reduction of the delivery system NovaFlex+ profile, combined with a lower-profile expandable sheath (eSheath, Edwards Lifesciences), resulted in a reduction of the dimensions of the introducer sheath. This was achieved by using a thinner stainless steel alloy stent and by crimping the SAPIEN XT proximal to the balloon on the catheter shaft and aligning the valve onto the balloon inside the descending aorta.

The Edwards eSheath (self-expandable and re-collapsible sheath allowing a partial arterial dilatation of ~3 F) is avail-
able in unexpanded inner diameters of 16, 18, and 20 F (external diameter 6.6, 7.2, and 7.8 mm) for the 23, 26, and 29 mm SAPIEN XT valves, while the recommended minimum vessel diameter is 6.0, 6.5, and 7.0 mm respectively (Table 1). The valve can be implanted through multiple approaches: transfemoral (TF), transapical (TA) or transaortic (TAo), and a few subclavian access cases have been reported. In addition, it is a device that can be used for implantation in degenerated aortic, mitral and tricuspid bioprostheses, in mitral valve rings, and for implantation in the pneumonic valve position within a supporting stent.\textsuperscript{11-13}

As with the earlier devices, the inflow of the new generation S3 valve is covered by an internal polyethylene terephthalate (PET) skirt. However, the S3 incorporates an additional outer PET cuff that enhances sealing and minimizes PVR (Figure 1).\textsuperscript{9,10} Furthermore, the different frame geometry, with larger cells and wide strut angles, contributes to an ultralow delivery profile and high radial strength. The delivery system of the S3 (Commander) is a further development of the NovaFlex\textsuperscript{+} SAPIEN XT delivery catheter and is characterized by: a) increased flexion capabilities at two different levels (transverse aorta and final segment) for crossing the aortic arch and engaging the native valve in a more coaxial manner; b) more precise positioning of the valve by rotating a knob, with no need to push or pull the catheter; and finally c) a lower profile compared with the SAPIEN XT NovaFlex\textsuperscript{+} delivery system.

At present, the S3 is available in three sizes, 23, 26, and 29 mm (in addition a 20 mm valve is anticipated) with respective e-Sheath internal diameters 14, 14, and 16 F (external diameter 5.9, 5.9, and 6.6 mm), and recommended minimum vessel diameters 5.5, 5.5, and 6.0 mm (Table 1). Therefore, many patients previously considered unsuitable for femoral access because of small vessel diameters may safely undergo TAVI with the S3.

**Edwards CENTERA valve**

The Edwards CENTERA is a tri-leaflet bovine pericardial tissue valve currently available in three sizes: 23, 26, and 29 mm. In contrast to the SAPIEN family valves it is a self-expandable, re-sheathable and re-positionable valve attached to a low profile nitinol

---

**Table 1. The SAPIEN valves. Dimensions of the sheaths, peripheral arteries and aortic annuli.**

<table>
<thead>
<tr>
<th>Valve</th>
<th>Inner diameter of e-Sheath (F)</th>
<th>Minimum access vessel diameter (mm)</th>
<th>Native aortic annulus area (mm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAPIEN XT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 mm</td>
<td>16</td>
<td>6.0</td>
<td>300-414</td>
</tr>
<tr>
<td>26 mm</td>
<td>18</td>
<td>6.5</td>
<td>380-530</td>
</tr>
<tr>
<td>29 mm</td>
<td>20</td>
<td>7.0</td>
<td>490-660</td>
</tr>
<tr>
<td>SAPIEN 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 mm</td>
<td>14</td>
<td>5.5</td>
<td>338-430</td>
</tr>
<tr>
<td>26 mm</td>
<td>14</td>
<td>5.5</td>
<td>430-546</td>
</tr>
<tr>
<td>29 mm</td>
<td>16</td>
<td>6.0</td>
<td>540-680</td>
</tr>
</tbody>
</table>

---

\textsuperscript{10} \textit{HJC} (Hellenic Journal of Cardiology)
Clinical data

The first available randomized data on TAVI came from the PARTNER trials, in which the first generation SAPIEN valve was studied (profile 22-24 F). In the PARTNER-B trial, inoperable patients with severe symptomatic aortic stenosis were randomized to either TF TAVI or medical treatment (including valvuloplasty).\(^1\) The superiority of TAVI was indisputably proved, since the primary endpoint of death at 1 year was reduced by 45%. The PARTNER-A randomized trial demonstrated non-inferiority of TAVI compared to sAVR in high-risk patients.\(^10\) In particular, the one-year mortality in the TF treated patients was 4.2% lower than in their surgically treated counterparts. The PARTNER trial established TAVI as the gold-standard treatment for inoperable patients with high surgical risk (STS score >8% and EuroSCORE >15%) will be established by an ongoing randomized, multicenter prospective study (NCT01808274).\(^14\)

Vascular complications are a major cause of morbidity and mortality post-TAVI.\(^15\) The major vascular complication rates were 11% and 16.2% respectively.\(^1,2\) Data from the PARTNER trials and other studies revealed that major vascular complications were correlated with increased mortality.\(^15\) The strongest predictor for vascular complications was the ratio of the outer diameter of the sheath to the minimal lumen diameter of the access vessel;\(^18\) when this was higher than 1.05 vascular complications increased significantly.\(^19\) Recent studies showed a major decrease in major vascular complications (down to 4%) with the use of the newer-generation SAPIEN XT valve.\(^8,20,21\) It is expected that the lower profile S3 valve with the 14 F e-Sheath will further reduce such complications.\(^9,10\)

PVR after TAVI has been associated with increased mortality.\(^3,22\) In the PARTNER-A and B trials, the incidence of moderate or severe PVR at 30 days was 12.2% and 11.8%, respectively.\(^1,3\) Many studies have shown a lower PVR incidence with the balloon-expandable Edwards valve than with the self-expandable CoreValve. Indeed, in the FRANCE-2 registry, moderate or severe PVR was reported in 13.9% of TAVI patients (the corresponding incidence with the CoreValve was 22.5%).\(^23\) In a recent meta-analysis of 12,926 patients, the incidence of moderate or severe PVR was 9.1% in the SAPIEN valve group (95% confidence interval: 6.2-13.1%) and 16% in the CoreValve group (95% confidence interval: 13.4-19%).\(^24\) In the ADVANCE study of the CoreValve the corresponding percentage was 16%.\(^25\) The CHOICE trial revealed a greater rate of device success and a lower rate of moderate or severe PVR for the balloon-expandable SAPIEN XT valve compared to the self-expandable CoreValve (0.0% vs 7.2%, p=0.009, and 2.1% vs. 9.6% for total PVR, p=0.04).\(^26\) Recent data regarding the S3 valve revealed no moderate or severe PVR. Indeed, PVR was absent or trivial in 73% of patients and mild in the remainder.\(^27\) In addition, in a multicenter study of the S3 (n=150 patients) no severe PVR was reported and moderate PVR was reported in only 3.4%.\(^10\) Possible explanations for these low PVR rates are the outer polyethylene terephthalate (PET) sealing cuff, the more accurate positioning, and the improved sizing with adjunctive multi-detector row computed tomography (MDCT) screening. The results of these studies indicate that the S3 valve may allow the treatment of intermediate-risk patients with AS by minimizing the risk of PVR.

Heart block necessitating permanent pacemaker implantation (PPI) is a concern after TAVI.\(^28\) In-
terestingly, PPI is also a complication of sAVR, with an incidence of up to 11.8% (mean 7.0%, median 7.2%).29 In a comparison study, the incidence of PPI for TAVI was double that for SAVR (7.3% versus 3.4%, p=0.014).30 The large observational UK TAVI (United Kingdom Transcatheter Aortic Valve Implantation) and FRANCE-2 (French Aortic National CoreValve and Edwards) registries reported new pacemaker rates of 24.4% and 24.2%, respectively, with the CoreValve versus 7.4% and 11.5% with the SAPIEN/XT valves.23,31 Data from a recent meta-analysis revealed a three- to fourfold higher incidence of new PPI with the CoreValve (20.8%) versus the SAPIEN valves (5.4%).29

**How to implant to obtain the best outcome**

The optimum short- and long-term results of patients who undergo TAVI depend mainly upon proper patient selection by the Heart Team. According to the recent guidelines, TAVI should be performed only in highly specialized centers that have a functional multidisciplinary Heart Team, consisting of interventional cardiologists, echo-cardiologists, clinical cardiologists, cardiac surgeons, cardio-anesthesiologists, intensivists, vascular surgeons, and specialized nursing and technical staff (indication IC). Furthermore, ideally such procedures should be performed in latest-generation hybrid operating rooms, which combine the characteristics of a fully functional cardio-surgery room with the imaging modalities of a catheterization laboratory.

Correct measurement of the aortic valve annulus is essential for the correct sizing of the THV valves. Under-sizing THVs is a potential cause of PVR and device embolization. However, aggressive oversizing might contribute to annular rupture, coronary obstruction, atrioventricular block, periaortic hematoma, ventricular septal rupture, or anterior mitral leaflet injury. Traditional sizing criteria based on single-plane two-dimensional measurements do not appreciate the consistently oval-shaped anatomy of the aortic annulus. Recently, 3-dimensional (3D) annular assessments by MDCT and annulus area-based sizing have been shown to predict PVR, contributing to appropriate valve sizing.32 Sizing guidelines were developed to ensure that THVs are moderately but not excessively oversized relative to the annular area as assessed by MDCT (Table 1). For the balloon-expanding valves, it has been shown that relatively modest 5-10% area oversizing would be adequate. Under certain anatomical conditions (such as a heavily calcified aortic annulus or risk of coronary obstruction) even smaller oversizing (0-5%) is accepted, while in other cases (such as low leaflet and annulus calcium load) oversizing up to 15% is accepted. In addition, area oversizing by more than 20% has been shown to increase the risk of annular injury.33 Finally, the strategy of under-expansion, with post-dilation as necessary, might play a role in reducing the risk of annular injury and PVR in selected patients.34

**Table 2. Advantages and limitations of the SAPIEN XT and S3 valves.**

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower incidence of conduction abnormalities and thus permanent pacemaker implantation</td>
<td>Neither re-sheathable nor re-positionable</td>
</tr>
<tr>
<td>Lower incidence of paravalvular regurgitation</td>
<td>Oversizing increases the risk of aortic annulus rupture</td>
</tr>
<tr>
<td>High flexibility, enhancing trackability and optimal coaxial alignment</td>
<td>Need for rapid ventricular pacing</td>
</tr>
<tr>
<td>Delivered through low-profile expandable e-Sheath</td>
<td></td>
</tr>
</tbody>
</table>

**Conclusion**

Mounting experience with the newer-generation balloon-expandable valves (SAPIEN XT and S3) in well selected patients shows that the procedure has become more user friendly and results in better clinical outcomes. The latest SAPIEN family valves exceed the self-expandable CoreValve in many aspects, such as a less frequent need for PPI, a lower incidence of residual PVR, and lower profiles of the introducer sheaths. Moreover, they can be used in other cardiac valve diseases where a proper supporting structure exists (Table 2). However, the “Achilles’ heel” of the SAPIEN balloon expandable valves is that they are not re-sheathable or re-positionable, while they have a potential risk of annular rupture. The SAPIEN-3 is the latest-generation representative of the
Edwards valve family. It has a very low profile and an improved delivery system for more accurate positioning, thus eliminating the disadvantage of possible residual PVR. Finally, the very promising self-expandable valve (CENTERA) of Edwards Lifesciences is expected.

Disclosure

Dr. K. Spargias is Proctor for the aortic bioprosthesis SAPIEN (Edwards Lifesciences) and CoreValve (Medtronic).

References


