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H ypertrophic cardiomyopathy 
(HCM) is a fascinating and poly-
morphic cardiac disease. Its im-

pact on cardiac function1 retains intense 
clinical interest as it is one of the most 
common inherited cardiac diseases, af-
fecting about 1 in 500 people.2 According 
to the prevalent view, HCM is a predomi-
nantly obstructive disease compromising 
systolic left ventricular (LV) ejection.3-21 
Then again, impeded left ventricular or-
thograde emptying is not an invariable 
finding.22-30 Diastolic dysfunction associ-
ated with the abnormal hypertrophy pat-
terns and their sequelae may also be re-
sponsible for impaired LV pumping per-
formance.31-36 The diastolic peculiarities 
of LV dynamics in HCM were the focus 
of a companion survey.31 Additionally, the 
myocyte disorganization typifying HCM 
probably creates systolic contraction in-
efficiencies,37 and may be implicated in 
marked mechanical functional limitation 
in some HCM patients.

As ejection flow characteristics be-
came clinically measurable diagnostic fea-
tures—with conventional and multisensor 
left heart catheterization, echocardiogra-
phy, Doppler velocimetry, and MRI—de-
tails have been sought with a view to lo-
calizing LV outflow obstruction and char-
acterizing the role of the systolic anteri-
or motion (SAM) of the mitral valve.38-41 
Mitral leaflet coaptation is disrupted by 
SAM, resulting in significant mitral re-

gurgitation and impairing forward cardiac 
output;42-43 there can be an apparent “nor-
malization” of the Doppler mitral inflow 
pattern, associated with the orthograde 
surge of the regurgitant volume ensuing in 
early filling.33

The many-sided phenotypic abnormalities of 
HCM

The complexity of the underlying diverse 
and interacting abnormalities in HCM is 
epitomized in the more than 80 individual 
names given to it by different investigators 
in the past.44 No theory focusing on a “sin-
gle culprit” pathophysiologic mechanism 
could possibly be generally applicable. Be-
ing fully cognizant of this, after an over-
view of systolic ejection pressure gradients 
in HCM, I aim at conveying a new physi-
ologic understanding and clinical aware-
ness of important, selected fluid dynamic 
phenomena.

These phenomena underlie imaging 
and multisensor catheterization dynamic 
geometry and flow patterns of LV systolic 
function that are more likely to be seen in 
HCM patients than in others. However, it 
should be recognized that similar LV fluid 
dynamics can prevail in certain circulatory 
states characterized by hyperdynamic ven-
tricular contraction with low venous re-
turn and greatly diminished end-systolic 
volumes.45 Such states are typified by pow-
erful activation of the sympathoadrenal 
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system, in a reflex compensatory response to severe 
hypovolemia accruing from hemorrhage, burns, dehy-
dration from gastrointestinal losses, diabetic ketoaci-
dosis, or excessive sweating, or in response to a dras-
tically impeded venous return or mitral inflow caused 
by a tension pneumothorax, pulmonary embolism, 
cardiac tumor, or cardiac tamponade.

The protean fluid dynamics of HCM

Most cardiologists appreciate that fluid dynamics are 
central in gaining insight into systolic LV function in 
this clinically protean and fascinating disease. Lurk-
ing behind the adjective “protean,” meaning vari-
able or inconsistent, stands the sea-god Proteus from 
Greek mythology. When confronted, Proteus shape-
shifts to a new identity; he escapes by “morphing.” 
I have previously46 applied the term “polymorphic” 
HCM systolic pressure gradients in a similar sense, 
akin to that in polymorphic DNA: DNA sequences 
that are relatively variable between different indi-
viduals. Protean and polymorphic are the complicat-
ed fluid dynamics of HCM. Fortunately, a qualitative 
appreciation of their nature and implications and of 
their expressions in catheterization and noninvasive 
measurements is within the command of interested 
clinical cardiologists.

Flow-associated early- and mid-systolic non-obstructive 
pressure gradients

The total acceleration of a fluid particle is the time 
rate of change of its velocity along its path. There-
fore, the total acceleration is the sum of two quanti-
ties: the local acceleration, or time rate of change of 
the velocity at any given point in the flow, and the 
convective acceleration, which is the change in velocity 
of a particle due to change in position and relates to 
velocity non-uniformity in space (e.g. converging or 
diverging instantaneous streamlines). Inertial forces 
associated with local and convective accelerations of 
intraventricular blood dominate early ejection.47 In-
ertia is the tendency of a body to preserve its present 
state of motion, whether it is at rest or moving uni-
formly forward in a straight line. Due to its inertia, it 
takes application of some force to compel a fluid such 
as blood to be accelerated, or alter its state of motion. 
The early phase of ejection in HCM is characterized 
by increasing deep and outflow tract left ventricular 
and aortic root pressures, while aortic root flow ve-
locity briskly attains and transiently remains near its 

peak (Figure 1).46 We can analyze early ejection dy-
namics by the Euler equation and its integral, the un-
steady Bernoulli equation, familiar to cardiologists, 
which incorporates only pressure and inertial effects, 
rather than the unwieldy Navier-Stokes equations, 
which also encompass viscous (“frictional”) effects.48

It is the interaction of flow-field geometry—out-
flow tract narrowing by subaortic septal hypertro-
phy—with enhanced early ejection velocities and ac-
celerations that underlies the augmentation of the 
early intraventricular and aortic transvalvular ejec-
tion pressure gradients.1,46 The term Bernoulli effect 
pertains to this phenomenon of pressure reduction 
with increasing velocity. Fluid dynamic analysis, us-
ing multisensor-catheter ejection velocities and pres-
sure gradients and angiographic measurements,49 

Figure 1. Pressure-flow relation with large early- and huge mid- 
and late-systolic pressure gradients in hypertrophic cardiomyopa-
thy. From top downward: aortic velocity, and deep left ventricular 
(LV), LV outflow tract (LVOT), and aortic root (AO) micro-
manometric signals, by retrograde triple-tip pressure-plus-velocity 
left-heart catheter. The left atrial (LA) micromanometric signal 
was measured simultaneously by transseptal catheter. The vertical 
line identifies onset of SAM-septal contact, from a simultaneous 
M-mode mitral echocardiogram (not shown); most of the ejec-
tion is already completed by then, in this patient. The huge mid- 
and late-systolic gradient (hatched area) is maintained despite 
minuscule remaining forward or even negative aortic velocities. 
Inset: continuous lines designate the LV, LVOT, and AO signals, 
superposed on interrupted-line tracings from the other sites. AO 
– aortic; SAM – systolic anterior motion of the mitral valve. Re-
produced with permission of PMPH-USA from Pasipoularides A. 
Heart’s vortex: intracardiac blood flow phenomena. Shelton, CT: 
People’s Medical Publishing House, 2010.
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suggests that ordinary convective acceleration (“Ber-
noulli”) effects are accentuated preeminently in early 
ejection in HCM; thus, at peak aortic root flow accel-
eration, they account for over half the instantaneous 
intraventricular pressure gradient, whereas under 
normal conditions, they may contribute less than one-
quarter of its magnitude.1,46 Greatly intensified Ber-
noulli effects in a narrowed subaortic region can en-
gender spectacular intraventricular and transvalvular 
flow-associated early- and mid-ejection pressure gra-
dients.1,46,50-52

Systolic anterior motion of the mitral leaflets and 
apposition to the septum

The intensified Bernoulli gradients in the outflow 
tract region that is narrowed by upper septal hyper-
trophy may regularly give rise to a Venturi mech-
anism, whereby the high-velocity flow entrains the 
neutrally buoyant mitral leaflets, drawing them an-
teriorly, and lifts them toward the interventricular 
septum.1,12,46 That LV outflow velocities at the lev-
el of the mitral leaflets are elevated at the onset of 
SAM is compatible with such a Venturi action, but 
does not prove that this mechanism is predominant-
ly or invariably responsible for SAM in HCM. SAM 
may also implicate a concomitant papillary muscle 
displacement. Anterior and inward displacement of 
the papillary muscles in HCM can alter the effective-
ness of chordal support, so that the relatively slack 
leaflets are readily displaced anteriorly. Moreover, 
the leaflet-coaptation point may be displaced clos-
er to the septum than normal, and this might allow 
the protruding leaflets to extend into the oncoming 
stream53 and be shoved (rather than sucked) by the 
flow against the septum. A classic continuous-wave 
Doppler sign is the late peaking so-called “lobster-
claw”17 or “dagger-shaped”54 profile, which is accom-
panied by a pressure gradient escalation while the mi-
tral valve moves closer to the septum as the chamber 
shrinks; these findings are exaggerated by the Valsal-
va maneuver.

Whether mitral leaflet-septal contact is the cause 
of the huge mid- and late-systolic intraventricular gra-
dient remains somewhat controversial. It is notewor-
thy that, as highlighted in Figure 1, this gradient rises 
to its peak levels and maintains them in the face of di-
minutive forward or even negative aortic root veloci-
ties recorded by the multisensor-catheter. Mitral re-
gurgitation invariably accompanies SAM. Open-heart 
ventriculo-myectomy or transaortic septal myectomy, 

by trimming the septum and widening the outflow 
tract, eliminate the abnormal leaflet motion and mi-
tral regurgitation.55

Dissipative structures preclude significant pressure 
recovery in aortic root

The diminutive forward or reversed aortic root veloc-
ities recorded by the catheter-mounted electromag-
netic sensor late in systole and exemplified in Figure 
1 probably represent coherent turbulent flow struc-
tures or vortices1,46,47,56 with recirculating retrograde 
velocity components. Coherent turbulent eddies rep-
resenting “dissipative structures”1,47 are also seen in 
the ascending aorta in conjunction with the jet issuing 
from a stenosed aortic valve.1,46,47,50,51

Because of the intense turbulence, there is no sig-
nificant pressure rise by Bernoulli interconversion in 
the wide flow area of the ascending aorta;1 this is eas-
ily verified by comparing the LV outflow tract and 
aortic pressure signals in Figure 1. It implies negli-
gible pressure loss recovery1,46,57 or insignificant con-
version of flow kinetic energy into pressure in the as-
cending aorta, where flow area re-expands beyond 
the confluent-streamline subvalvular region; there is 
instead a transfer of flow kinetic energy to turbulent 
eddies that dissipate mechanical energy into heat in 
the eddy cascade.47 The polymorphic late-systolic as-
cending aortic velocity signals in HCM, with eddy-
related secondary positive/negative velocity fluctua-
tions, have also been demonstrated by Doppler velo-
cimetry.58

Mid- and late-systolic intraventricular gradients

In addition to augmented inertial forces, viscous 
(“frictional”) shear forces59 impact the enormous 
mid- and late-systolic intraventricular gradients.1 The 
continuing importance of inertial forces is obvious 
from the sharp accelerations and rising confluent 
velocities demonstrated by Doppler recordings in 
the outflow tract as echocardiographic dimensions 
shrink.46,58 Previous analyses have revealed how vis-
cous effects grow rapidly with shrinking size in the re-
ceding late-systolic flow passageway in HCM,1,46 as 
the intraventricular flow regime transforms its qua-
si-inviscid (negligible frictional effects) early- to mid-
ejection character. This transformation greatly com-
plicates matters. Because viscous forces are no longer 
negligible, the Euler equation and all Bernoulli vari-
ants, which are predicated on inviscid behavior,59 be-
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come inapplicable. Accordingly, a solution to the Na-
vier-Stokes equations59 encompassing pressure, iner-
tial, and viscous forces is necessary in analyzing these 
mid- and late-systolic gradients.1

The Navier-Stokes equations arise from apply-
ing Newton’s Second Law to fluid motion to describe 
fluid dynamics. They govern velocity rather than po-
sition. A solution of the partial differential Navier-
Stokes equations is termed a velocity- or flow-field, 
and describes the fluid velocity in space and time. 
Once the velocity-field is resolved, other quantities of 
interest (such as volumetric flow rate) may be found 
and one can visualize various trajectories, such as in-
stantaneous streamlines for laminar flow. As a gener-
al rule, explicit solutions for the Navier-Stokes equa-
tions, such as that for Poiseuille tube flow, cannot be 
given. However, with the help of mathematical and 
computational methods we can construct similarity 
transformations,1,46 which by taking into account the 
rotational symmetry of the approximately cylindrical 
flow-field can reduce the Navier-Stokes equations to 
ordinary differential equations60 that can be solved 
numerically to derive computer simulations of the 
mid- and the late-systolic intraventricular flow-fields.

Computer simulations: “experiments” conducted in 
silico

Computer simulation is a method for studying complex 
systems with applications in almost every field of sci-
entific study.60 Over the last fifty years, its exploitation 
to gain insight into complex dynamic phenomena not 
readily amenable to conventional experimentation has 
grown to encompass medical fields, including cardiolo-
gy. Among clinicians it remains relatively unexploited, 
although it has been demonstrated61-65 to play a role as 
informative and creative as the conventional approach 
to scientific inquiry that entails measuring and experi-
menting in the clinical and basic settings.

Having features superior to those of modern in-
strumentation and imaging modalities, including high 
spatiotemporal resolutions in studies of time-varying 
intracardiac flow-fields, simulations offer superb in-
vestigatory power.60-66 There are indeed some prob-
lems, such as the detailed fluid dynamics of the em-
pirically observed, in a subset of HCM patients and 
others, phenomenon of “cavity obliteration,”23,45 for 
which simulations provide unobtrusive and much 
more reliable and detailed answers than any experi-
ment or clinical instrumentation, which are limited by 
practical constraints of spatiotemporal resolution.67

Computer simulations must be used to address 
problems that cannot be feasibly addressed through 
empirical studies: to wit, catheter-mounted trans-
ducers should but cannot always cause only insig-
nificant interference with the flow quantities being 
measured. Besides, there is routinely a tradeoff be-
tween the temporal and spatial resolutions of a tech-
nique—cf. speckle-tracking echocardiography and 
tagged MRI.31 And we should make no mistake about 
it: simulation is a process of data creation, and is a 
deeply creative source of urgently needed knowledge 
and understanding in this area. More and more scien-
tific “experiments” are being carried out in silico, and 
a great variety of simulation techniques have been de-
veloped against a backdrop of well-established fluid 
dynamic theory.

Simulations are a useful tool for sharpening our 
understanding of HCM and other diseases and their 
management.66 They reveal features of phenomena 
for which conventional data are sparse. In this con-
text, consider a) the interference with the flow-field of 
late-systolic cavity obliteration stemming from cath-
eter placement within this narrow cylindrical field, 
and b) the more or less unavoidable “catheter entrap-
ment”68 vitiating catheter-placement within this con-
tracting late-systolic field. Such considerations demon-
strate the importance of simulations in analyzing the 
fluid dynamics of cavity obliteration, as seen not only 
in selected cases of HCM but also in circulatory states 
characterized by hyperdynamic LV contraction with 
low venous return and greatly diminished end-systolic 
volumes.

Simulation of large intraventricular gradient production 
without obstruction

To a fluid dynamicist, the argument that large flow-
associated intraventricular and aortic transvalvular 
ejection pressure gradients in HCM are always syn-
onymous with an “obstruction” would be equivalent 
to arguing with an astronaut that the Earth is flat. In 
this and subsequent sections, we will examine promi-
nent gradients associated with flow without any local-
ized obstruction, employing fluid dynamic computer 
simulation results.

Computer simulation visualizations can make the 
abstract concrete, and provide virtually tangible ac-
cess to mathematical relationships that reveal the es-
sential nature of phenomena not amenable to direct 
detailed measurement.61,66 The graphs that follow en-
liven our process of understanding the dynamics of 
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cavity obliteration in HCM. Vision provides insight 
and plays a central role in developing both scientific 
understanding and theories.66 Indeed, “theory” has 
roots in the Greek verb theorein (to look at) and the 
noun theoria (both sight and theory).

HCM illustrates palpably the principle, enunci-
ated and thoroughly elaborated by Aristotle in sev-
eral of his works, that form and function go together; 
anatomy and physiology are coupled.69 Figure 2 de-
picts the geometry of a model I developed to simu-
late late-systolic dynamics in HCM with cavity oblit-
eration.1,46 The “obliterating” chamber is represent-
ed as a narrow tube with contracting walls, assuming 
a small constant volumetric outflow rate consistent 
with the late-systolic signals in Figure 1. Local and dy-
namic (associated with uniform wall-contraction dis-
placing sequentially cumulative flow increments from 
apex to outlet) convective inertial as well as viscous 
effects are important in the flow-field. A solution to 
the Navier-Stokes equations is derived using a simi-
larity transformation,1,46-48 and clinically important 
insightful results are presented graphically in the fol-
lowing figures and computer-created diagrams.

Radial contraction-associated convective acceleration

Figure 3 illustrates cavity-obliteration kinematics as-
suming a late-systolic “starting” radius of 0.3 cm and 
a constant late-systolic volumetric outflow rate of 20 
ml/s. As displayed in the top panel, the cross-section-

ally averaged linear outflow velocity increases at an in-
creasing rate with advancing cavity shrinkage and, as 
shown in the lower panel, by the time the effective radi-
us falls to 0.16 cm, only slightly more than half its start-
ing value, the outflow velocity attains nearly 2.5 m/s.

Figure 4 displays the linear increase of the axial 
cross-sectionally averaged velocity along the cham-
ber axis, resulting from the uniform pattern of radi-
al contraction along the chamber length (cf. Figure 2 
and inset of Figure 3). The constant slope reflects the 
uniform dynamic convective acceleration produced 
by the radial contraction of the walls; this contraction 
engenders dynamic convective acceleration despite 
the uniform cross-section!

The elucidation of this radial contraction-associ-
ated dynamic convective acceleration is provided in 
the top panel of Figure 5, in which a computation-
al example of the simulated intraventricular ejection 
flow-field is shown graphically. Representative veloc-

MODELING EVOLVING CAVITY OBLITERATION

cylindrical cavity

subvalvular region

Figure 2. Geometry of model simulating late-systolic fluid dynam-
ics in hypertrophic cardiomyopathy with “cavity obliteration.” The 
shrinking late-systolic left ventricular chamber is represented as a 
narrow tube with contracting walls. Local and especially convec-
tive (associated with wall collapse, which displaces sequentially 
increasing flow increments from apex to outlet) inertial as well as 
powerful viscous effects are salient. Note the wider subvalvular 
region.
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Figure 3. Fluid dynamic computer simulation results; inset depicts 
geometry. As demonstrated in the top panel, the cross-sectionally 
averaged outlet velocity increases at an increasing rate with ad-
vancing cavity shrinkage, attaining nearly 2.5 m/s by the time the 
effective radius falls to 0.16 cm, only slightly more than half its 
starting value, shown in the lower panel.
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ity vectors are shown on the top half of the diametral 
cross-section of the axisymmetric flow-field. Each 
such vector has two components: one normal to the 
cavity walls associated with their radial contraction; 
and another along the chamber axis. Representative 
streamlines are shown on the bottom half of the di-
ametral cross-section. Observe that, for this realistic 
simulation that encompasses not only inertial but al-
so viscous flow forces, all streamlines originate per-
pendicularly to the “endocardial” surface. Thus the 
viscous-flow condition of “no-slip” of fluid relative to 
the wall is satisfied;46,47,56,61,63 this is corroborated by 
the velocity vector plot: the fluid velocity at the wall 
equals the wall collapse velocity.

Streamlines are everywhere parallel to the local 
velocity vector. Accordingly, no flow crosses a stream-
line. Streamlines are lines of constant stream-func-
tion, ψ, a mathematical idea embodying the principle 
of mass conservation. The difference in the stream-
function values of any two streamlines represents the 
volumetric flow rate between them.59-61,63 In view of 
these considerations, the depictions on the two halves 
of the diametral cut through the axisymmetric field 
portray vividly the strong dynamic convective acceler-
ation between apex and outflow orifice of the cavity, 
as it is squeezed by myocardial contraction.

In Figure 5, not only does the axial velocity vec-
tor component increase, but also the cross-stream dis-
tance between streamlines diminishes greatly closer 
to the outflow orifice. Confluence of streamlines im-
plies a convective increase in velocity; conversely, dif-
fluence or divergence of streamlines implies a convec-
tive decrease in velocity, i.e., convective deceleration, 
as is hinted on the bottom panel.46,59-61,63 As signpost-
ed on the bottom panel, such decelerated flows are 
inherently unstable, tending to break down into vorti-
cal patterns under the action of the corresponding ad-
verse (Bernoulli) pressure gradient.56,61,70,71

Convective acceleration effects on mid- and late-
ejection velocity profiles

Figure 6 illustrates the effects of the myocardial con-
traction-induced dynamic convective acceleration on 
mid- and late-ejection velocity profiles. Profiles are 
plotted along the cylinder axis at values of the nor-
malized tubular chamber length (distance from apex/
axis length) corresponding to 0 (apical end), ¼, ½ 
(middle), ¾, and 1 (outflow end). The augmentation 
of the velocities and of the radial slope of the veloc-
ity at the wall at successive stations is conspicuous. In 
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progressive squeeze

obliterating cavity

The opposite
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in the ensuing

early filling

Figure 5. Late-systolic ejection flow-field kinematics in hypertro-
phic cardiomyopathy with cavity obliteration. The strong convec
tive acceleration of the flow is reflected in converging streamlines 
toward the downstream outlet and in the concomitant elongation 
of the axial velocity-vector components. The zero axial compo-
nents of the velocity vectors at the endocardial surface satisfy the 
“no-slip” condition. The opposite flow pattern is not applicable 
in the ensuing early filling because highly decelerated flows are 
unstable.
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view of the uniform radial contraction rate, the cross-
sectionally averaged value of the plotted velocity pro-
files increases from 0 (apical closed end), to ¼, ½, ¾ 
and 1 times the outflow-end value. The parabolic pro-
files for Poiseuille tube flow, distributed uniformly 
along the axis, are plotted for comparison.

Observe the progressive sharp increase in the 
slope of the velocity profile at the cylinder wall; this 
slope is proportional to the shear stress exerted by 
flowing blood locally at the endocardial surface.59 Its 
sharp intensification may beget important epigenetic 
influences,69 affecting cardiac structure and function 
in HCM in as yet unknown ways. Ambitious genotyp-
ic studies in patients with HCM, pursued without due 
attention to the modulating influences of such flu-

id dynamic epigenetic factors that are in play in any 
given case, may not be the most efficient approach in 
this emerging era of pharmacogenomics and person-
alized therapeutics.69

Remarkable intraventricular gradient production 
without obstruction

Figure 7 exemplifies the giant intraventricular gradi-
ent production without static or dynamic obstruction 
in the cylindrical model of late-stage systolic ejection 
with cavity obliteration. The top panel of Figure 7 
shows the axial apportionment of the gradient along 
the normalized distance from apex to outlet orifice. 
Observe that the gradient intensifies closer to the 
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outlet;1,46,50,61-65,70-72 this is revealed to best advantage 
by the stairstep graph plot—note also the orientation 
of the arrowheads.

Consider now the anatomic relationship between 
the model cylinder representing the obliterating LV 
cavity on the one hand and the adjacent subaortic LV 
outflow tract region, also depicted in Figures 2 and 3, 
on the other. Referring to this fluid-dynamically most 
salient topography, I suggest that at least some cases 

of HCM that appear to be without a prominent trans-
valvular pressure gradient may be accounted for by a 
technical cause: the placement of the upstream micro-
manometric sensor in the subvalvular region, beyond 
the obliterating cavity across whose length the flow-
associated gradient actually develops (cf. lower panel). 
This is a worthwhile clinical point to remember.

The bottom panel of Figure 7 shows the pressure 
drop, or gradient, from the apical end of the contract-
ing cavity to progressively increasing distances along its 
entire length (8 cm in this simulation), plotted against 
the corresponding rapidly increasing local value of the 
cross-sectionally averaged velocity. Note that apply-
ing the popular “simplified Bernoulli formula” (ΔP = 
4v2, where “gradient” is in mmHg and velocity in m/s) 
to the highest velocity (nearly 2.5 m/s) shown in Figure 
7 would predict a ΔP of about 25 mmHg; too low in 
comparison to the huge late-systolic gradients of HCM 
with cavity elimination and to the simulated gradi-
ent of almost 80 mmHg.1,46 This results from ignoring 
the viscous hydrodynamic shear forces, powerful in this 
geometric setting, in the simplified Bernoulli formula, 
which allows for only convective acceleration inertial 
effects (and only implicitly at that).

Tiny volumes may be ejected by huge mid- and late-
ejection intraventricular gradients

Figure 8 illustrates the tiny cumulative volumes that 
are ejected by the huge driving intraventricular 
late-systolic gradients in HCM with cavity elimina-
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Figure 7. Enormous intraventricular gradient production without 
static or dynamic obstruction in the fluid dynamic model of “cavity 
obliteration.” Top panel: axial pressure gradient apportionment, 
highlighting gradient intensification nearer the outlet. Bottom 
panel: the pressure drop (ΔP) from the upstream closed end of 
the contracting cylinder to progressively increasing distances, 
from apex to outflow orifice, along its entire length (8 cm in this 
simulation) plotted against the corresponding local value of the 
cross-sectionally averaged velocity. Application of the “simplified 
Bernoulli formula” to the highest velocity (nearly 2.5 m/s) shown 
would predict ΔP≈25 mmHg—too low compared to the huge late 
gradients of hypertrophic cardiomyopathy and to the simulated 
gradient of almost 80 mmHg. This stems from neglecting the po-
tent viscous (frictional) hydrodynamic shear forces in the simpli-
fied Bernoulli formula.

Figure 8. Stairstep graph plot demonstrating to best advantage 
the progressively explosive augmentation of the pressure gradient 
increments, which ensues in the face of minuscule ejected volume 
additions in late systole (cf. arrows, too).
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tion.1,22,26,46,59 Again, this is demonstrated to great ad-
vantage by the stairstep graph plot (cf. arrows, too), 
which shows that the progressively explosive augmen-
tation of the successive pressure gradient increments 
ensues in the face of minuscule ejected volume incre-
ments in late systole. Such late-systolic gradients are 
not accompanied by any beneficial stroke volume ef-
fect. They do, however, have considerable deleterious 
effects: they raise substantially subendocardial myo-
cardial stresses and metabolic energy demands, while 
impeding subendocardial blood perfusion and meta-
bolic supply, thus exacerbating further cardiac hyper-
trophy-induced impairments of relaxation and dia-
stolic function.32,33,46,47,73-78

Conclusions and clinical implications

Computer simulation visualizations can reveal the es-
sential nature of phenomena not amenable to direct 
detailed measurement, including the multifaceted, 
protean manifestations of morpho-mechanical abnor-
malities in HCM. They can be relied upon to address 
problems that cannot be tackled through conven-
tional instrumentation, because it interferes with the 
quantities being measured. Having features superior 
to those of modern instrumentation and imaging mo-
dalities, including high spatiotemporal resolutions in 
studies of time-varying intracardiac flow-fields, simu-
lations offer superb investigatory power. In problems 
such as the detailed fluid dynamics of the phenome-
non of “cavity obliteration,” simulations provide un-
obtrusive, reliable, and much more detailed answers 
than available laboratory or clinical instrumentation. 
They demonstrate that large flow-associated intra-
ventricular and aortic transvalvular ejection pressure 
gradients are not synonymous with an obstruction.

Clinically, it is important that only tiny volumes 
may be ejected by huge mid- and late-ejection intra-
ventricular gradients, which are not accompanied by 
any beneficial stroke volume effect. Nevertheless, 
these gradients can raise substantial subendocardial 
stresses and metabolic energy demands, while imped-
ing subendocardial blood perfusion and metabolic 
supply, thus exacerbating impairments of relaxation 
and diastolic function.

Considering the anatomic contiguity of the model 
cylinder representing the obliterating LV cavity and 
the adjacent subaortic LV outflow tract region, I pro-
pose that at least some cases of HCM that appear to 
be non-obstructive (viz. without a prominent trans-
valvular pressure gradient) may be accounted for by 

the placement of the upstream pressure sensor in 
the subvalvular region, beyond the obliterating cav-
ity across whose length the flow-associated gradient 
actually develops. This is a clinically vital point. So 
is the fact that the popular “simplified Bernoulli for-
mula” severely underestimates the huge late-systolic 
gradients of HCM with cavity elimination because it 
ignores powerful viscous hydrodynamic shear forces.

Dynamic (associated with wall-contraction dis-
placing sequentially cumulative flow increments from 
apex to outlet) convective acceleration as well as vis-
cous effects are important under circumstances of cav-
ity obliteration in HCM. The cross-sectionally aver-
aged value of the velocity increases along the LV-axis, 
accompanied by a progressive sharp increase in the 
radial slope of the velocity profile at the cavity wall; 
this slope is proportional to the shear stress exerted 
by flowing blood locally at the endocardial surface. Its 
sharp intensification may beget important epigenetic 
influences, affecting cardiac structure and function in 
HCM in as yet unknown ways. Ambitious genotypic 
studies in patients with HCM should pay due atten-
tion to the modulating influences of such fluid dynam-
ic epigenetic factors, in this emerging era of pharma-
cogenomics and personalized therapeutics.69,79
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