The implantable loop recorder (ILR) is a recognized diagnostic modality in the investigation of recurrent syncope suggesting a possible cardiac rhythm abnormality.1,2 The ILR is able to sense and automatically record arrhythmic events. It is a valuable tool in the diagnostic workup of patients presenting with syncope of unknown origin, when the history, in combination with clinical examination, resting electrocardiogram (ECG), tilt-table testing and electrophysiology are inconclusive. Documenting a cardiac rhythm abnormality as the cause of recurrent syncope3 allows appropriate management aimed at preventing subsequent syncopal episodes, with beneficial effects on the patient’s prognosis and quality of life.4

Case presentation

A 70-year-old woman was referred from a regional rural hospital to our cardiology department for further investigation of recurrent syncope in the last three years. Her last syncope caused her to fall to the ground and suffer injuries to the neck and facial cranium, presenting with periorbital bruising. The initial routine workup was negative for cardiac, neurologic or metabolic causes of syncope. The implantable loop recorder revealed an arrhythmic origin for the recurrent syncope. The patient was managed appropriately with pacemaker implantation and has remained asymptomatic for one year.
cervical arteries showed no hemodynamically significant occlusion of the carotid arteries, while the vertebral arteries were also patent and the direction of blood flow was the same as in the carotid arteries. Exercise ECG and tilt-table testing were also negative. Electrophysiology showed normal sinus and atrioventricular node function with failure to induce ventricular arrhythmia following intravenous administration of beta-adrenergic agonists.

Since the comprehensive diagnostic workup failed to reveal the origin of recurrent syncope, implantation of a loop recorder was indicated. In the first 3 months of follow up, several automatic recordings were obtained which were not related to syncope. These recordings were the result of sensing problems, which led to automatic activation of the device (Figure 3). During the same period, one patient-activated recording following a syncopal episode was obtained. This recording documented atrial fibrillation with a rapid ventricular response followed by a pause lasting more than 5 seconds (Figure 4). A permanent transvenous dual chamber pacemaker was implanted and the patient was further treated with oral anticoagulants (acenocoumarol) and propafenone. The ILR remained in place for one year following pacemaker implantation. Atrial fibrillation episodes were not recorded and syncope did not recur during this period. Subsequently, the device was surgically removed.

Discussion

We present the case of a female patient with recurrent syncope of unknown origin. Conventional diagnostic workup in primary and secondary health facilities had failed to reveal the underlying pathophyslogic mechanism. The unpredictable nature and the traumatic consequences of syncopal episodes called for further investigation. Patients with syncope of unknown origin have a yearly mortality rate of 6% and a yearly incidence of sudden death of 4%. Cardiogenic syncope is associated with a yearly mortality of 18-32% and a sudden death incidence of 24%. Irrespective of the cause of syncope, underlying cardiac disease is associated with increased death risk. In 50%
of patients with recurrent syncope there is an arrhyth-
mogenic cause, which may be treated effectively. Our patient was therefore referred to a tertiary health facility specializing in arrhythmias.

Syncope is a symptom defined as a transient, self-
limited loss of consciousness, which usually causes the patient to fall to the ground. The onset of syncope is abrupt and the subsequent recovery is spontaneous, complete and prompt. Syncope recurs in at least 50% of patients. Recurrent syncope is a frequent clinical problem. It accounts for 1-6% of hospital admissions and up to 3% of emergency department presentations. In the general population, the incidence of syncope is 3%.

The most common of the arrhythmogenic causes, according to most studies, is sick sinus syndrome.
Quite often, however, extensive arrhythmologic studies fail to establish a diagnosis. Ambulatory electrocardiographic monitoring is non-diagnostic in 90% of patients. Electrophysiology reveals arrhythmia probably accounting for syncope in 12-40% of the cases. A negative electrophysiologic study does not rule out severe arrhythmia as the cause of syncopal episodes. Tilt-table testing has a low diagnostic value (30-40%); nevertheless, the patient’s history often provides evidence suggesting a neurocardiogenic origin of syncope.

Failure to document the cause of recurrent syncope despite comprehensive invasive and noninvasive investigation creates therapeutic dilemmas and affects not only the quality of life, but also the patient’s prognosis. Our patient had already suffered three syncopal events. All were associated with physical injury. The sudden and unexpected nature of syncope caused her great concern about the outcome of this condition. She worried that this would happen again and that it might be fatal. Her concerns were absolutely justified.

Recent advances in loop recorder technology allow long-term electrocardiographic monitoring of patients with recurrent syncope of unknown origin. According to current guidelines, implantation of an ILR is indicated in patients with syncope of unknown origin after a conventional diagnostic workup with clinical or ECG features suggestive of an arrhythmogenic cause, or a history of recurrent syncope with injury. An ILR may also be indicated in the initial phase of the workup, instead of conventional investigations, in patients with preserved cardiac function who have clinical or ECG features suggesting an arrhythmic syncope, as well as in the assessment of the contribution of bradycardia before embarking on cardiac pacing in patients with suspected or certain neurally-mediated syncope presenting with frequent or traumatic syncopal episodes.

The ILR is placed subcutaneously in the upper left part of the thorax and allows continuous ECG monitoring using a solid-state loop memory, which can store up to 24 months. The device can be activated either by the patient or automatically and stores ECG recordings 20 min before and 4 min after activation, enabling the recording of the arrhythmogenic or symptomatic episode. ILR data are entered in a computer for interrogation.

Automatic activation is an important advantage of second generation ILRs, since higher mortality rates were reported in patients who failed to activate the device following a syncopal episode.

Figure 4. Activation of the device by the patient following a syncopal episode. Atrial fibrillation with a rapid ventricular response was recorded, followed by a pause lasting more than 5 s.
mapping of the ECG signal prior to device implantation is essential, as are adjustments to the sensitivity settings during follow-up visits. In our patient, there were many inappropriate automatic recordings. Diagnosis was made in the first three months following device implantation by evaluating patient-activated ECG recording data after a syncopal episode.

A diagnostic modality that requires the recurrence of a spontaneous event involves the risk of patient injury or death. The ability to determine an accurate diagnosis and avoid a probably ineffective therapeutic intervention in the event of misdiagnosis outweighs this low risk. Taking into consideration the unpredictability and low frequency of syncpe recurrences, the ILR provides the unique advantage of continuous ECG monitoring until the next recurrence and recording of heart rhythm during a syncopal episode, thus allowing the establishment or exclusion of an arrhythmic cause of syncope.

Cost issues have been addressed by several centers. The comprehensive diagnostic workup in patients with recurrent syncope consumes significant healthcare resources. In a study comparing costs, taking into account the diagnostic yield of various diagnostic modalities, diagnostic yield ranged from 3% for echocardiography to 88% for the ILR. The ILR may reduce healthcare resource utilization by providing a diagnosis that permits definitive therapy. Optimal patient selection is the key to improving the effectiveness of every therapeutic intervention.

Conclusion

Patients with recurrent syncope frequently undergo extensive investigations with significant implications for the utilization of healthcare resources. Recent advances in long-term ECG monitoring techniques have enhanced the diagnostic yield in patients with infrequent symptoms. The ILR permits a syncpe-heart rhythm correlation in a high percentage of patients (45-80%). This investigative tool is associated with improved patient prognosis and quality of life, as well as healthcare resource savings.

References
